Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Butyl 3-oxo-2,3-dihydrobenzo[d][1,2]thiazole-2-carboxylate

Jian-Xin Yang,^a Xiang-Hui Wang,^b Xue-Mei Tan,^a Yin Wang^a and Qiang Lin^{c,d}*

^aInstitute of Materials and Chemical Engineering, Hainan University, Haikou 570228, People's Republic of China, ^bInstitute of Environmental Science and Engineering. Kunming University of Science and Technology, Kunming 650093, People's Republic of China, ^cHainan Provincial Fine Chemical Engineering Center, Hainan University, Haikou 570228, People's Republic of China, and ^dCollege of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571100, People's Republic of China

Correspondence e-mail: lingianggourp@163.com

Received 4 November 2011; accepted 11 November 2011

Key indicators: single-crystal X-ray study; T = 153 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.088; data-to-parameter ratio = 19.9.

The title compound, $C_{12}H_{13}NO_3S$, was synthesised by the reaction of benzo[d] isothiazol-3(2H)-one with butyl alcohol in toluene. The benzoisothiazolone ring system is almost planar with a mean deviation of 0.041 (1) Å. In the crystal, molecules are linked by weak intermolecular $C-H \cdots O$ hydrogen bonds.

Related literature

For background to the sythesis of benzoisothiazolone derivatives, see: Davis (1972); Elgazwy & Abdel-Sattar (2003). For the biological activity of 1,2-benzoisothiazolone derivatives, see: Taubert et al. (2002). For structural studies of related alkyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate derivatives, see: Wang et al. (2011a,b); Xu & Yin (2006); Cavalca et al. (1969).

Experimental

Crystal data C12H13NO3S

 $M_r = 251.29$

Monoclinic, $P2_1/c$	Z = 4
a = 11.730 (3) Å	Mo $K\alpha$ radiation
b = 11.925 (3) Å	$\mu = 0.27 \text{ mm}^{-1}$
c = 8.443 (2) Å	T = 153 K
$\beta = 95.791 \ (4)^{\circ}$	$0.62 \times 0.36 \times 0.10 \text{ mm}$
V = 1175.0 (6) Å ³	

Data collection

Rigaku AFC10/Saturn724+	9917 measured reflections
diffractometer	3092 independent reflections
Absorption correction: multi-scan	2647 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.028$
$T_{\min} = 0.851, \ T_{\max} = 0.973$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	155 parameters
$wR(F^2) = 0.088$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.37 \text{ e} \text{ Å}^{-3}$
3092 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C2 - H2 \cdots O1^{i} \\ C2 - H2 \cdots O3^{i} \end{array}$	0.95 0.95	2.46 2.39	3.1610 (19) 3.2987 (18)	131 159

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010).

This work was supported by the National Natural Science Foundation of China (No. 20962007) and the Creative Talents Plan of Hainan University 211 Project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2366).

References

- Cavalca, L., Gasparri, G. F., Mangia, A. & Pelizzi, G. (1969). Acta Cryst. B25, 2349-2354
- Davis, M. (1972). Adv. Heterocycl. Chem. 14, 43-98.
- Elgazwy, H. & Abdel-Sattar, S. (2003). Tetrahedron, 59, 7445-7463.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Taubert, K., Kraus, S. & Schulze, B. (2002). Sulfur Rep. 23, 79-81. Wang, X., Yang, J., You, C. & Lin, Q. (2011a). Acta Cryst. E67, o2237.
- Wang, X., Yang, J., You, C. & Lin, Q. (2011b). Acta Cryst. E67, o2238.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, 0496-0497..

supplementary materials

Acta Cryst. (2011). E67, o3409 [doi:10.1107/S160053681104791X]

Butyl 3-oxo-2,3-dihydrobenzo[d][1,2]thiazole-2-carboxylate

J.-X. Yang, X.-H. Wang, X.-M. Tan, Y. Wang and Q. Lin

Comment

1,2-benzoisothiazol-3(2*H*)-ones are a class of compounds with a wide spectrum of biological activities (Davis, 1972, Elgazwy & Abdel-Sattar, 2003). 1,2-Benzoisothiazolone derivatives have been reported to possess high antibacterial and antifungal activities (Taubert *et al.*, 2002). As a part of our ongoing study of the substituent effect on the solid state structures of alkyl 3-oxo-2,3-dihydro-1,2-benzothiazole-2-carboxylate analogues (Wang *et al.*, 2011*a*,*b*), herein we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzoisothiazolone ring system is almost planar with a mean deviation of 0.041 (1) Å from the least–squares plane defined by the nine constituent atoms and the C8–O2–C9–C11 torsion angle is -177.04 (12)°. The crystal packing (Fig. 2) is stabilised by weak intermolecular C—H…O hydrogen bonds between CH atoms of phenyl ring and the carbonyl oxygen atoms (Table 1).

Experimental

A solution (20 mL) containing benzo[d] isothiazol-3(2*H*)-one (1.51 g, 0.01 mol) was added dropwise to a solution of butyl alcohol (0.74 g, 0.01 mol) and bis(triehloromethyl)carbonate in toluene (20 mL) under stirring on an ice-water bath. The reaction mixture was stirred at room temperature for 4.5 h and refluxed for 5 h to afford the title compound (1.25 g, yield 50%). Single crystals suitable for X-ray measurements were obtained by recrystallisation of the title compound from cyclohexane at room temperature.

Refinement

The H atoms were placed at calculated positions and refined in riding mode, with the carrier atom–H distances = 0.95 Å for aryl, 0.99Å for methylene, 0.98 Å for the methyl. The *U*iso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq for the remaining H atoms.

Figures

Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2. A view of the C—H…O interactions (dashed lines) in the crystal structure of the title compound.

Butyl 3-oxo-2,3-dihydrobenzo[d][1,2]thiazole-2-carboxylate

F(000) = 528
$D_{\rm x} = 1.420 {\rm Mg m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 3724 reflections
$\theta = 2.8 - 29.1^{\circ}$
$\mu = 0.27 \text{ mm}^{-1}$
T = 153 K
Prism, colourless
$0.62 \times 0.36 \times 0.10 \text{ mm}$

Data collection

Rigaku AFC10/Saturn724+ diffractometer	3092 independent reflections
Radiation source: fine-focus sealed tube	2647 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\text{max}} = 29.1^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
phi and ω scans	$h = -16 \rightarrow 15$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$k = -16 \rightarrow 16$
$T_{\min} = 0.851, \ T_{\max} = 0.973$	$l = -10 \rightarrow 11$
9917 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.088$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.0451P)^2 + 0.360P]$ where $P = (F_0^2 + 2F_c^2)/3$
3092 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
155 parameters	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.19 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

S1 0.46675 (3) 0.51858 (3) 0.70649 (4) 0.01717 (O1 0.40826 (8) 0.82060 (8) 0.83392 (12) 0.0214 (2) O2 0.25897 (8) 0.56323 (8) 0.54771 (12) 0.0200 (2) O3 0.24088 (9) 0.74791 (8) 0.59858 (13) 0.0257 (2) N1 0.39346 (9) 0.64470 (9) 0.71407 (13) 0.0174 (2) C1 0.56998 (11) 0.56720 (11) 0.85277 (15) 0.0159 (3) C2 0.66483 (12) 0.50761 (11) 0.92167 (17) 0.0195 (3) H2 0.6789 0.4326 0.8912 0.023* C3 0.73755 (12) 0.56198 (12) 1.03597 (17) 0.0235 (3) H3 0.8024 0.5230 1.0848 0.028*	
O1 0.40826 (8) 0.82060 (8) 0.83392 (12) 0.0214 (2) O2 0.25897 (8) 0.56323 (8) 0.54771 (12) 0.0200 (2) O3 0.24088 (9) 0.74791 (8) 0.59858 (13) 0.0257 (2) N1 0.39346 (9) 0.64470 (9) 0.71407 (13) 0.0174 (2) C1 0.56998 (11) 0.56720 (11) 0.85277 (15) 0.0159 (3) C2 0.66483 (12) 0.50761 (11) 0.92167 (17) 0.0195 (3) H2 0.6789 0.4326 0.8912 0.023* C3 0.73755 (12) 0.56198 (12) 1.03597 (17) 0.0235 (3) H3 0.8024 0.5230 1.0848 0.028*	0)
O2 0.25897 (8) 0.56323 (8) 0.54771 (12) 0.0200 (2) O3 0.24088 (9) 0.74791 (8) 0.59858 (13) 0.0257 (2) N1 0.39346 (9) 0.64470 (9) 0.71407 (13) 0.0174 (2) C1 0.56998 (11) 0.56720 (11) 0.85277 (15) 0.0159 (3) C2 0.66483 (12) 0.50761 (11) 0.92167 (17) 0.0195 (3) H2 0.6789 0.4326 0.8912 0.023* C3 0.73755 (12) 0.56198 (12) 1.03597 (17) 0.0235 (3) H3 0.8024 0.5230 1.0848 0.028* C4 0.71858 (13) 0.67273 (13) 1.08206 (18) 0.0249 (3)	
O3 0.24088 (9) 0.74791 (8) 0.59858 (13) 0.0257 (2) N1 0.39346 (9) 0.64470 (9) 0.71407 (13) 0.0174 (2) C1 0.56998 (11) 0.56720 (11) 0.85277 (15) 0.0159 (3) C2 0.66483 (12) 0.50761 (11) 0.92167 (17) 0.0195 (3) H2 0.6789 0.4326 0.8912 0.023* C3 0.73755 (12) 0.56198 (12) 1.03597 (17) 0.0235 (3) H3 0.8024 0.5230 1.0848 0.028* C4 0.71858 (13) 0.67273 (13) 1.08206 (18) 0.0249 (3)	
N1 0.39346 (9) 0.64470 (9) 0.71407 (13) 0.0174 (2) C1 0.56998 (11) 0.56720 (11) 0.85277 (15) 0.0159 (3) C2 0.66483 (12) 0.50761 (11) 0.92167 (17) 0.0195 (3) H2 0.6789 0.4326 0.8912 0.023* C3 0.73755 (12) 0.56198 (12) 1.03597 (17) 0.0235 (3) H3 0.8024 0.5230 1.0848 0.028* C4 0.71858 (13) 0.67273 (13) 1.08206 (18) 0.0249 (3)	
C1 0.56998 (11) 0.56720 (11) 0.85277 (15) 0.0159 (3) C2 0.66483 (12) 0.50761 (11) 0.92167 (17) 0.0195 (3) H2 0.6789 0.4326 0.8912 0.023* C3 0.73755 (12) 0.56198 (12) 1.03597 (17) 0.0235 (3) H3 0.8024 0.5230 1.0848 0.028* C4 0.71858 (13) 0.67273 (13) 1.08206 (18) 0.0249 (3)	
C2 0.66483 (12) 0.50761 (11) 0.92167 (17) 0.0195 (3) H2 0.6789 0.4326 0.8912 0.023* C3 0.73755 (12) 0.56198 (12) 1.03597 (17) 0.0235 (3) H3 0.8024 0.5230 1.0848 0.028* C4 0.71858 (13) 0.67273 (13) 1.08206 (18) 0.0249 (3)	
H20.67890.43260.89120.023*C30.73755 (12)0.56198 (12)1.03597 (17)0.0235 (3)H30.80240.52301.08480.028*C40.71858 (13)0.67273 (13)1.08206 (18)0.0249 (3)	
C3 0.73755 (12) 0.56198 (12) 1.03597 (17) 0.0235 (3) H3 0.8024 0.5230 1.0848 0.028* C4 0.71858 (13) 0.67273 (13) 1.08206 (18) 0.0249 (3)	
H30.80240.52301.08480.028*C40.71858 (13)0.67273 (13)1.08206 (18)0.0249 (3)	
C4 0.71858 (13) 0.67273 (13) 1.08206 (18) 0.0249 (3)	
H4 0.7702 0.7075 1.1611 0.030*	
C5 0.62513 (12) 0.73131 (12) 1.01296 (16) 0.0212 (3)	
H5 0.6122 0.8068 1.0423 0.025*	
C6 0.54993 (11) 0.67727 (11) 0.89886 (15) 0.0163 (3)	
C7 0.44594 (11) 0.72650 (11) 0.81747 (15) 0.0165 (3)	
C8 0.29136 (11) 0.66070 (11) 0.61571 (16) 0.0180 (3)	
C9 0.16309 (12) 0.57154 (11) 0.42454 (17) 0.0203 (3)	
H9A 0.1843 0.6183 0.3352 0.024*	
H9B 0.0962 0.6062 0.4681 0.024*	
C10 0.13447 (12) 0.45390 (11) 0.36782 (17) 0.0206 (3)	
H10A 0.1160 0.4074 0.4590 0.025*	
H10B 0.2019 0.4204 0.3242 0.025*	
C11 0.03285 (13) 0.45355 (13) 0.23998 (18) 0.0257 (3)	
H11A -0.0345 0.4867 0.2844 0.031*	
H11B 0.0513 0.5011 0.1498 0.031*	
C12 0.00234 (15) 0.33608 (15) 0.1787 (2) 0.0366 (4)	
H12A 0.0677 0.3039 0.1310 0.044*	
H12B -0.0639 0.3401 0.0983 0.044*	
H12C -0.0164 0.2887 0.2674 0.044*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.01792 (16)	0.01312 (15)	0.01945 (18)	0.00089 (11)	-0.00322 (12)	-0.00196 (12)
O1	0.0219 (5)	0.0150 (4)	0.0263 (5)	0.0014 (4)	-0.0018 (4)	-0.0037 (4)
O2	0.0185 (5)	0.0153 (5)	0.0242 (5)	-0.0012 (4)	-0.0070 (4)	-0.0002 (4)

supplementary materials

03	0.0224 (5)	0.0175 (5)	0.0349 (6)	0.0041 (4)	-0.0082 (4)	-0.0033 (4)
N1	0.0166 (5)	0.0134 (5)	0.0212 (6)	0.0012 (4)	-0.0036 (4)	-0.0016 (4)
C1	0.0160 (6)	0.0163 (6)	0.0151 (6)	-0.0025 (5)	0.0002 (5)	-0.0003 (5)
C2	0.0192 (7)	0.0177 (6)	0.0211 (7)	0.0019 (5)	0.0001 (5)	0.0002 (5)
C3	0.0193 (7)	0.0257 (7)	0.0240 (7)	0.0017 (5)	-0.0050 (5)	0.0014 (6)
C4	0.0226 (7)	0.0256 (7)	0.0247 (7)	-0.0031 (6)	-0.0065 (6)	-0.0022 (6)
C5	0.0221 (7)	0.0185 (6)	0.0222 (7)	-0.0019 (5)	-0.0012 (5)	-0.0032 (5)
C6	0.0168 (6)	0.0155 (6)	0.0163 (6)	-0.0010 (5)	0.0005 (5)	0.0002 (5)
C7	0.0171 (6)	0.0154 (6)	0.0166 (6)	-0.0021 (5)	0.0005 (5)	-0.0009 (5)
C8	0.0167 (6)	0.0166 (6)	0.0201 (7)	-0.0017 (5)	-0.0012 (5)	0.0003 (5)
C9	0.0169 (6)	0.0191 (7)	0.0232 (7)	-0.0015 (5)	-0.0072 (5)	0.0007 (5)
C10	0.0183 (6)	0.0184 (6)	0.0238 (7)	-0.0032 (5)	-0.0046 (5)	0.0001 (5)
C11	0.0225 (7)	0.0278 (8)	0.0250 (7)	-0.0027 (6)	-0.0068 (6)	-0.0017 (6)
C12	0.0340 (9)	0.0348 (9)	0.0383 (9)	-0.0091 (7)	-0.0096 (7)	-0.0082 (7)

Geometric parameters (Å, °)

S1—N1	1.7368 (12)	C5—C6	1.3964 (18)
S1—C1	1.7395 (14)	С5—Н5	0.9500
O1—C7	1.2192 (16)	C6—C7	1.4614 (18)
O2—C8	1.3346 (16)	C9—C10	1.5092 (19)
O2—C9	1.4561 (16)	С9—Н9А	0.9900
O3—C8	1.1983 (16)	С9—Н9В	0.9900
N1—C8	1.3998 (17)	C10-C11	1.5252 (19)
N1—C7	1.4086 (16)	C10—H10A	0.9900
C1—C6	1.3958 (18)	C10—H10B	0.9900
C1—C2	1.3967 (19)	C11—C12	1.523 (2)
C2—C3	1.383 (2)	C11—H11A	0.9900
С2—Н2	0.9500	C11—H11B	0.9900
C3—C4	1.401 (2)	C12—H12A	0.9800
С3—Н3	0.9500	C12—H12B	0.9800
C4—C5	1.379 (2)	C12—H12C	0.9800
C4—H4	0.9500		
N1—S1—C1	89.82 (6)	O3—C8—N1	124.93 (12)
N1—S1—C1 C8—O2—C9	89.82 (6) 114.44 (10)	O3—C8—N1 O2—C8—N1	124.93 (12) 109.02 (11)
N1—S1—C1 C8—O2—C9 C8—N1—C7	89.82 (6) 114.44 (10) 124.58 (11)	O3—C8—N1 O2—C8—N1 O2—C9—C10	124.93 (12) 109.02 (11) 107.12 (10)
N1—S1—C1 C8—O2—C9 C8—N1—C7 C8—N1—S1	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9)	O3—C8—N1 O2—C8—N1 O2—C9—C10 O2—C9—H9A	124.93 (12) 109.02 (11) 107.12 (10) 110.3
N1—S1—C1 C8—O2—C9 C8—N1—C7 C8—N1—S1 C7—N1—S1	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9)	O3—C8—N1 O2—C8—N1 O2—C9—C10 O2—C9—H9A C10—C9—H9A	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3
N1—S1—C1 C8—O2—C9 C8—N1—C7 C8—N1—S1 C7—N1—S1 C6—C1—C2	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9) 120.79 (12)	O3—C8—N1 O2—C8—N1 O2—C9—C10 O2—C9—H9A C10—C9—H9A O2—C9—H9B	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3 110.3
N1—S1—C1 C8—O2—C9 C8—N1—C7 C8—N1—S1 C7—N1—S1 C6—C1—C2 C6—C1—S1	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9) 120.79 (12) 112.75 (10)	O3—C8—N1 O2—C8—N1 O2—C9—C10 O2—C9—H9A C10—C9—H9A O2—C9—H9B C10—C9—H9B	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3 110.3 110.3
N1—S1—C1 C8—O2—C9 C8—N1—C7 C8—N1—S1 C7—N1—S1 C6—C1—C2 C6—C1—S1 C2—C1—S1	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9) 120.79 (12) 112.75 (10) 126.47 (11)	O3—C8—N1 O2—C8—N1 O2—C9—C10 O2—C9—H9A C10—C9—H9A O2—C9—H9B C10—C9—H9B H9A—C9—H9B	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3 110.3 110.3 108.5
N1—S1—C1 C8—O2—C9 C8—N1—C7 C8—N1—S1 C7—N1—S1 C6—C1—C2 C6—C1—S1 C2—C1—S1 C3—C2—C1	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9) 120.79 (12) 112.75 (10) 126.47 (11) 117.48 (13)	O3—C8—N1 O2—C8—N1 O2—C9—C10 O2—C9—H9A C10—C9—H9A O2—C9—H9B C10—C9—H9B H9A—C9—H9B C9—C10—C11	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3 110.3 110.3 108.5 111.11 (12)
N1—S1—C1 C8—O2—C9 C8—N1—C7 C8—N1—S1 C7—N1—S1 C6—C1—C2 C6—C1—S1 C2—C1—S1 C3—C2—C1 C3—C2—H2	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9) 120.79 (12) 112.75 (10) 126.47 (11) 117.48 (13) 121.3	O3—C8—N1 O2—C8—N1 O2—C9—C10 O2—C9—H9A C10—C9—H9A O2—C9—H9B C10—C9—H9B H9A—C9—H9B C9—C10—C11 C9—C10—H10A	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3 110.3 108.5 111.11 (12) 109.4
N1—S1—C1 C8—O2—C9 C8—N1—C7 C8—N1—S1 C7—N1—S1 C6—C1—C2 C6—C1—S1 C2—C1—S1 C3—C2—C1 C3—C2—H2 C1—C2—H2	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9) 120.79 (12) 112.75 (10) 126.47 (11) 117.48 (13) 121.3 121.3	O3—C8—N1 O2—C9—C10 O2—C9—H9A C10—C9—H9A O2—C9—H9B C10—C9—H9B H9A—C9—H9B C9—C10—C11 C9—C10—H10A C11—C10—H10A	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3 110.3 108.5 111.11 (12) 109.4 109.4
N1—S1—C1 C8—O2—C9 C8—N1—C7 C8—N1—S1 C7—N1—S1 C6—C1—C2 C6—C1—S1 C2—C1—S1 C3—C2—C1 C3—C2—H2 C1—C2—H2 C2—C3—C4	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9) 120.79 (12) 112.75 (10) 126.47 (11) 117.48 (13) 121.3 121.3 122.12 (13)	O3—C8—N1 O2—C9—C10 O2—C9—H9A C10—C9—H9A O2—C9—H9B C10—C9—H9B H9A—C9—H9B C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3 110.3 108.5 111.11 (12) 109.4 109.4 109.4
N1—S1—C1 C8—O2—C9 C8—N1—C7 C8—N1—S1 C7—N1—S1 C6—C1—C2 C6—C1—S1 C2—C1—S1 C3—C2—C1 C3—C2—H2 C1—C2—H2 C2—C3—C4 C2—C3—H3	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9) 120.79 (12) 112.75 (10) 126.47 (11) 117.48 (13) 121.3 121.3 122.12 (13) 118.9	O3—C8—N1 O2—C9—C10 O2—C9—H9A C10—C9—H9A O2—C9—H9B C10—C9—H9B H9A—C9—H9B C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B C11—C10—H10B	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3 110.3 108.5 111.11 (12) 109.4 109.4 109.4 109.4
$\begin{array}{c} N1 & = S1 & = C1 \\ C8 & = O2 & = C9 \\ C8 & = N1 & = C7 \\ C8 & = N1 & = S1 \\ C7 & = N1 & = S1 \\ C7 & = N1 & = S1 \\ C6 & = C1 & = C2 \\ C6 & = C1 & = C2 \\ C6 & = C1 & = C3 \\ C2 & = C1 & = S1 \\ C3 & = C2 & = C1 \\ C3 & = C2 & = C1 \\ C3 & = C2 & = C1 \\ C1 & = C2 & = C1 \\ C2 & = C3 & = C4 \\ C2 & = C3 & = H3 \\ C4 & = C3 & = H3 \end{array}$	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9) 120.79 (12) 112.75 (10) 126.47 (11) 117.48 (13) 121.3 121.3 122.12 (13) 118.9 118.9	O3—C8—N1 O2—C9—C10 O2—C9—C10 O2—C9—H9A C10—C9—H9A O2—C9—H9B C10—C9—H9B H9A—C9—H9B C9—C10—C11 C9—C10—H10A C11—C10—H10A C11—C10—H10B H10A—C10—H10B	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3 110.3 108.5 111.11 (12) 109.4 109.4 109.4 109.4 109.4 109.4 109.4
$\begin{array}{c} N1 & = S1 & = C1 \\ C8 & = O2 & = C9 \\ C8 & = N1 & = C7 \\ C8 & = N1 & = S1 \\ C7 & = N1 & = S1 \\ C7 & = N1 & = S1 \\ C6 & = C1 & = C2 \\ C6 & = C1 & = S1 \\ C2 & = C1 & = S1 \\ C3 & = C2 & = C1 \\ C3 & = C2 & = C1 \\ C3 & = C2 & = H2 \\ C1 & = C2 & = H2 \\ C1 & = C2 & = H2 \\ C2 & = C3 & = H3 \\ C4 & = C3 & = H3 \\ C5 & = C4 & = C3 \end{array}$	89.82 (6) 114.44 (10) 124.58 (11) 119.55 (9) 115.82 (9) 120.79 (12) 112.75 (10) 126.47 (11) 117.48 (13) 121.3 121.3 122.12 (13) 118.9 118.9 120.13 (13)	O3—C8—N1 O2—C9—C10 O2—C9—H9A C10—C9—H9A O2—C9—H9B C10—C9—H9B H9A—C9—H9B C9—C10—C11 C9—C10—H10A C11—C10—H10A C9—C10—H10B C11—C10—H10B H10A—C10—H10B C12—C11—C10	124.93 (12) 109.02 (11) 107.12 (10) 110.3 110.3 110.3 108.5 111.11 (12) 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4

C3—C4—H4	119.9	C10-C11-H11A	109.1
C4—C5—C6	118.55 (13)	C12—C11—H11B	109.1
С4—С5—Н5	120.7	C10-C11-H11B	109.1
С6—С5—Н5	120.7	H11A—C11—H11B	107.8
C1—C6—C5	120.93 (12)	C11—C12—H12A	109.5
C1—C6—C7	113.75 (12)	C11—C12—H12B	109.5
C5—C6—C7	125.32 (12)	H12A—C12—H12B	109.5
O1—C7—N1	124.56 (12)	C11—C12—H12C	109.5
O1—C7—C6	127.68 (12)	H12A—C12—H12C	109.5
N1—C7—C6	107.76 (11)	H12B—C12—H12C	109.5
O3—C8—O2	126.03 (12)		
C1—S1—N1—C8	-179.43 (11)	S1—N1—C7—O1	177.71 (11)
C1—S1—N1—C7	3.08 (10)	C8—N1—C7—C6	179.85 (12)
N1-S1-C1-C6	-2.42 (10)	S1—N1—C7—C6	-2.81 (14)
N1—S1—C1—C2	177.76 (13)	C1—C6—C7—O1	-179.65 (13)
C6—C1—C2—C3	-0.2 (2)	C5—C6—C7—O1	0.4 (2)
S1—C1—C2—C3	179.58 (11)	C1—C6—C7—N1	0.89 (16)
C1—C2—C3—C4	-0.3 (2)	C5—C6—C7—N1	-179.04 (13)
C2—C3—C4—C5	-0.1 (2)	C9—O2—C8—O3	9.8 (2)
C3—C4—C5—C6	0.9 (2)	C9—O2—C8—N1	-171.42 (11)
C2—C1—C6—C5	1.1 (2)	C7—N1—C8—O3	5.8 (2)
S1—C1—C6—C5	-178.74 (11)	S1—N1—C8—O3	-171.40 (12)
C2—C1—C6—C7	-178.84 (12)	C7—N1—C8—O2	-172.92 (12)
S1—C1—C6—C7	1.32 (15)	S1—N1—C8—O2	9.83 (15)
C4—C5—C6—C1	-1.4 (2)	C8—O2—C9—C10	-177.04 (12)
C4—C5—C6—C7	178.51 (13)	O2—C9—C10—C11	178.90 (12)
C8—N1—C7—O1	0.4 (2)	C9—C10—C11—C12	179.42 (13)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2···O1 ⁱ	0.95	2.46	3.1610 (19)	131
C2—H2···O3 ⁱ	0.95	2.39	3.2987 (18)	159
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+3/2$.				

